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CHAPTER 2

Tutorial

2.1 Plotting mesh

[1]: import pyvista as pv
from pyvista import examples

from pyvirtualdisplay import Display
import os
display = Display(visible=0, size=(1280, 1024))
display.start()

[1]: <pyvirtualdisplay.display.Display at 0x7f8dac50ff40>

[2]: mesh = examples.download_bunny_coarse()
cpos = [(0.2, 0.3, 0.9), (0, 0, 0), (0, 1, 0)]
mesh.plot(cpos=cpos, show_edges=True, color=True)
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[2]: [(0.2, 0.3, 0.9),
(0.0, 0.0, 0.0),
(0.0, 1.0, 0.0)]

[3]: mesh = pv.Sphere()
shrunk_mesh = mesh.shrink(shrink_factor=0.8)
p = pv.Plotter(shape=(1, 2))
p.subplot(0, 0)
p.add_text("Before Shrink")
p.add_mesh(mesh, color="tan", show_edges=True)
p.subplot(0, 1)
p.add_text("After Shrink")
p.add_mesh(shrunk_mesh, color="tan", show_edges=True)
p.show()
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[3]: [(2.8332709368378763, 2.8332709368378763, 2.8332709368378763),
(0.0, 0.0, 0.0),
(0.0, 0.0, 1.0)]

[ ]:

2.2 Introduction to FEM Analysis with Python

This tutorial aims to show using Python to pre-processing, solve, and post-processing of Finite Element Method
analysis. It uses a finite element method library with a Python interface called GetFEM for preprocessing and solving.
We will load vtk file by using meshio and visualize by matplotlib in pre-processing and post-processing. This tutorial
was used in the PyConJP 2019 talk. You can watch the talk on YouTube below. This tutorial is based on the following
official GetFEM page tutorial.

[1]: from IPython.display import YouTubeVideo

YouTubeVideo("6JuB1GiDLQQ", start=512)

2.2. Introduction to FEM Analysis with Python 5

https://mybinder.org/v2/gh/getfem-doc/getfem-examples/master?filepath=doc%2Fdemo_unit_disk.ipynb
http://getfem.org/
https://github.com/nschloe/meshio
https://github.com/matplotlib/matplotlib
https://pycon.jp/2019/schedule/?sessionId=120
http://getfem.org/tutorial/thermo_coupling.html
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[1]:

2.2.1 Installation

GetFEM including its python interface can be installed from a terminal by executing aptitude update and aptitude
install python3-getfem++.

sudo aptitude install python3-getfem++

The additional packages in requirements.txt are required for this tutorial. You do not need to build these environments
because they are already configured in the Dockerfile.

2.2.2 The problem setting

The problem refers to “Poisson’s Equation on Unit Disk” published by Math Works’s homepage.

∆𝑢 = 1 on Ω, 𝑢 = 0 on 𝛿Ω

|pdedemo1\_01|

2.2.3 How to use GetEM

We take the following steps when using GetFEM to solve finite element problems. See this page for more information
on using GetFEM.

• define a MesherObject

• define a Mesh

• define a MeshFem

• define a MeshIm

6 Chapter 2. Tutorial

https://github.com/getfem-doc/getfem-examples/blob/master/requirements.txt
https://github.com/getfem-doc/getfem-examples/blob/master/Dockerfile
https://mathworks.com/help/pde/ug/solve-poissons-equation-on-a-unit-disk.html
http://getfem.org/tutorial/basic_usage.html
http://getfem.org/python/cmdref_MesherObject.html
http://getfem.org/python/cmdref_Mesh.html
http://getfem.org/python/cmdref_MeshFem.html
http://getfem.org/python/cmdref_MeshIm.html
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• define a Model and set it up

• solve Model object

• get value from Model object

2.2.4 Initialization

GetFEM can be imported as follows (numpy has also to be imported).

[2]: import getfem as gf
import numpy as np

2.2.5 Mesh generation

We use GetFEM’s MesherObject to create a mesh from the geometric information to be analyzed. This object represent
a geometric object to be meshed by the experimental meshing procedure of GetFEM. We can represent a disk by
specifying a radius, a 2D center, and using “ball” geometry.

[3]: center = [0.0, 0.0]
radius = 1.0

mo = gf.MesherObject("ball", center, radius)

We can make mesh object mesh by calling the experimental mesher of GetFEM on the geometry represented by mo.
The approximate element diameter is given by h and the degree of the mesh is K (𝐾 > 1 for curved boundaries).

[4]: h = 0.1
K = 2
mesh = gf.Mesh("generate", mo, h, K)

2.2.6 Boundary selection

To define a boundary condition, we set a boundary number on the outer circumference of the circle.

[5]: outer_faces = mesh.outer_faces()
OUTER_BOUND = 1
mesh.set_region(OUTER_BOUND, outer_faces)

2.2.7 Mesh draw

We visualize the created mesh to check its quality. We can output mesh objects, but matplotlib can only display
triangles. Therefore, we make a Slice object with a slice operation of ("none",), which does not cut the mesh.
With a refinement of 1, this serves to convert the mesh to triangles.

[6]: sl = gf.Slice(("none",), mesh, 1)

We can export a slice to VTK file by using export_to_vtk method.

[7]: sl.export_to_vtk("sl.vtk", "ascii")

We can render VTK files using Paraview or mayavi2. In order to display in the jupyter notebook this time, we read in
meshio and draw in matplotlib.

2.2. Introduction to FEM Analysis with Python 7
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[8]: import pyvista as pv
from pyvirtualdisplay import Display

display = Display(visible=0, size=(1280, 1024))
display.start()
p = pv.Plotter()
m = pv.read("sl.vtk")
p.add_mesh(m, show_edges=True)
pts = m.points
p.show(window_size=[512, 384], cpos="xy")
display.stop()

[8]: <pyvirtualdisplay.display.Display at 0x7f6be0527c40>

2.2.8 Definition of finite element methods and integration method

We define the finite element and integration methods to use. We create a MeshFem that defines the degree of freedom
of the mesh as rank 1 (scalar).

[9]: mfu = gf.MeshFem(mesh, 1)

Next we set the finite element used. Classical finite element means a continuous Lagrange element. Setting
elements_degree to 2 means that we will use quadratic (isoparametric) elements.

[10]: elements_degree = 2
mfu.set_classical_fem(elements_degree)

The last thing to define is an integration method mim. There is no default integration method in GetFEM so it is
mandatory to define an integration method. Of course, the order of the integration method has to be chosen sufficient
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to make a convenient integration of the selected finite element method. Here, the square of elements_degree is
sufficient.

[11]: mim = gf.MeshIm(mesh, pow(elements_degree, 2))

2.2.9 Model definition

The model object in GetFEM gathers the variables of the models (the unknowns), the data and what are called the
model bricks. The model bricks are some parts of the model (linear or nonlinear terms) applied on a single variable or
linking several variables. A model brick is an object that is supposed to represent a part of a model. It aims to represent
some integral terms in a weak formulation of a PDE model. They are used to make the assembly of the (tangent) linear
system (see The model object for more details).

[𝐾] {𝑢} = {𝐹}

[12]: md = gf.Model("real")
md.add_fem_variable("u", mfu)

2.2.10 Poisson’s equation

To define Poisson’s equation, we have to define a Laplacian term and RHS source term. We can add the Laplacian
term (which is called a brick in GetFEM) by using add_Laplacian_brick().

[13]: md.add_Laplacian_brick(mim, "u")

[13]: 0

If you want to define constants in GetFEM, we use the add_fem_data() method.

[14]: F = 1.0
md.add_fem_data("F", mfu)

We can set constant values with the set_variable() method. Here we pass a vector (ndarray) the size of the
degrees of freedom.

[15]: md.set_variable("F", np.repeat(F, mfu.nbdof()))

We define the term RHS with the add_source_term_brick() method, using the constant F just defined.

[16]: md.add_source_term_brick(mim, "u", "F")

[16]: 1

Finally, we set the Dirichlet condition at the boundary.

[17]: md.add_Dirichlet_condition_with_multipliers(mim, "u", elements_degree - 1, OUTER_
→˓BOUND)

[17]: 2

2.2. Introduction to FEM Analysis with Python 9

http://getfem.org/userdoc/model_object.html


getfem examples, Release 20.12

2.2.11 Model solve

Once the model is correctly defined, we can simply solve it by:

[18]: md.solve()

[18]: (0, 1)

2.2.12 Export/visualization of the solution

The finite element problem is now solved. We can get the solution 𝑢 by using variable method.

[19]: U = md.variable("u")

We can output the computed u with the mesh of the Slice object.

[20]: sl.export_to_vtk("u.vtk", "ascii", mfu, U, "U")

display = Display(visible=0, size=(1280, 1024))
display.start()
p = pv.Plotter()
m = pv.read("u.vtk")
p.add_mesh(m, show_edges=True)
pts = m.points
p.show(window_size=[512, 384], cpos="xy")
display.stop()

[20]: <pyvirtualdisplay.display.Display at 0x7f6b9815f1c0>
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2.2.13 Exact solution

The exact solution to this problem is given by the following equation:

𝑢(𝑥, 𝑦) =
1 − 𝑥2 − 𝑦2

4

[21]: evalue = mfu.eval("(1-x*x-y*y)/4")

We can calculate the error for the L2 and H1 norms by using compute:

[22]: L2error = gf.compute(mfu, U - evalue, "L2 norm", mim)
H1error = gf.compute(mfu, U - evalue, "H1 norm", mim)
print("Error in L2 norm : ", L2error)
print("Error in H1 norm : ", H1error)

Error in L2 norm : 1.965329030567132e-06
Error in H1 norm : 0.00010936971229957788

As you can see, the size of the error is within the acceptable range.

[ ]:

2.3 study of cantilever beam

Consider a cantilever beam using the Finite Element Method library GetFEM++.

2.3.1 Creating a Model

Now we are ready, import the library.

[1]: import getfem as gf
import numpy as np
import numpy.testing as npt
import pandas as pd
import pyvista as pv
from IPython.display import Markdown

from pyvirtualdisplay import Display
import os
display = Display(visible=0, size=(1280, 1024))
display.start()

[1]: <pyvirtualdisplay.display.Display at 0x7ff96dbb9d90>

The review cases are as follows. GetFEM++ uses FEM_PRODUCT and IM_PRODUCT to two-dimensional the finite
element method and the integration method, respectively. For quadratic elements, the Gaussian integration point is 3.
IM_GAUSS1D(K) represents the integration point of 𝐾/2 + 1 points. The element uses plane strain elements. Set up
these meshes, the finite element method and the integration method.

2.3. study of cantilever beam 11
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[2]: cases = [
"case11",
"case12",
"case13",
"case14",
"case21",
"case22",
"case23",
"case24",
"case31",
"case32",
"case33",
"case34",
"case41",
"case42",
"case43",
"case44",

]

[3]: xs = [
4,
4,
4,
16,
4,
4,
4,
16,
4,
4,
4,
16,
4,
4,
4,
16,

]
ys = [

1,
2,
4,
8,
1,
2,
4,
8,
1,
2,
4,
8,
1,
2,
4,
8,

]
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[4]: fem_names = [
"FEM_PK(1, 2)",
"FEM_PK(1, 2)",
"FEM_PK(1, 2)",
"FEM_PK(1, 2)",
"FEM_PK(1, 1)",
"FEM_PK(1, 1)",
"FEM_PK(1, 1)",
"FEM_PK(1, 1)",
"FEM_PK(1, 1)",
"FEM_PK(1, 1)",
"FEM_PK(1, 1)",
"FEM_PK(1, 1)",
"FEM_PK_WITH_CUBIC_BUBBLE(1, 1)",
"FEM_PK_WITH_CUBIC_BUBBLE(1, 1)",
"FEM_PK_WITH_CUBIC_BUBBLE(1, 1)",
"FEM_PK_WITH_CUBIC_BUBBLE(1, 1)",

]

[5]: methods = [
"IM_GAUSS1D(4)",
"IM_GAUSS1D(4)",
"IM_GAUSS1D(4)",
"IM_GAUSS1D(4)",
"IM_GAUSS1D(2)",
"IM_GAUSS1D(2)",
"IM_GAUSS1D(2)",
"IM_GAUSS1D(2)",
"IM_GAUSS1D(0)",
"IM_GAUSS1D(0)",
"IM_GAUSS1D(0)",
"IM_GAUSS1D(0)",
"IM_GAUSS1D(4)",
"IM_GAUSS1D(4)",
"IM_GAUSS1D(4)",
"IM_GAUSS1D(4)",

]

[6]: pd.options.display.float_format = "{:.2f}".format
data = []
columns = ["Case Name", "Mesh", "Finite Element Method", "Integration Method"]
for case, x, y, fem_name, method in zip(cases, xs, ys, fem_names, methods):

data.append([case, str(x) + "x" + str(y), fem_name, method])
df = pd.DataFrame(data=data, columns=columns)
Markdown(df.to_markdown())

2.3. study of cantilever beam 13
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[6]: Case Name Mesh Finite Element Method Integration Method
0 case11 4x1 FEM_PK(1, 2) IM_GAUSS1D(4)
1 case12 4x2 FEM_PK(1, 2) IM_GAUSS1D(4)
2 case13 4x4 FEM_PK(1, 2) IM_GAUSS1D(4)
3 case14 16x8 FEM_PK(1, 2) IM_GAUSS1D(4)
4 case21 4x1 FEM_PK(1, 1) IM_GAUSS1D(2)
5 case22 4x2 FEM_PK(1, 1) IM_GAUSS1D(2)
6 case23 4x4 FEM_PK(1, 1) IM_GAUSS1D(2)
7 case24 16x8 FEM_PK(1, 1) IM_GAUSS1D(2)
8 case31 4x1 FEM_PK(1, 1) IM_GAUSS1D(0)
9 case32 4x2 FEM_PK(1, 1) IM_GAUSS1D(0)
10 case33 4x4 FEM_PK(1, 1) IM_GAUSS1D(0)
11 case34 16x8 FEM_PK(1, 1) IM_GAUSS1D(0)
12 case41 4x1 FEM_PK_WITH_CUBIC_BUBBLE(1, 1) IM_GAUSS1D(4)
13 case42 4x2 FEM_PK_WITH_CUBIC_BUBBLE(1, 1) IM_GAUSS1D(4)
14 case43 4x4 FEM_PK_WITH_CUBIC_BUBBLE(1, 1) IM_GAUSS1D(4)
15 case44 16x8 FEM_PK_WITH_CUBIC_BUBBLE(1, 1) IM_GAUSS1D(4)

Mesh

The overall size of the model is L = 10 mm in length, h = 1 mm in height, and b = 1 mm in depth. In general, a slender
ratio of 1: 10 is considered a beam element.

[7]: L = 10.0
b = 1.0
h = 1.0
meshs = []
for case, x, y in zip(cases, xs, ys):

X = np.arange(x + 1) * L / x
Y = np.arange(y + 1) * h / y
mesh = gf.Mesh("cartesian", X, Y)
meshs.append(mesh)
mesh.export_to_vtk("mesh_" + case + ".vtk", "ascii")

Outputs an image of each mesh.

[8]: p = pv.Plotter(shape=(4, 4))

for i in range(4):
for j in range(4):

p.subplot(i, j)
mesh = pv.read("mesh_" + cases[i * 4 + j] + ".vtk")
p.add_text(cases[i * 4 + j], font_size=10)
p.add_mesh(mesh, color="tan", show_edges=True)

p.show(cpos="xy")
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[8]: [(5.0, 0.5, 19.41486882686712),
(5.0, 0.5, 0.0),
(0.0, 1.0, 0.0)]

Region

Sets the area on the left side of the mesh where the Dirichlet condition is set. The right side sets the area for setting
the Neumann condition.

[9]: TOP_BOUND = 1
RIGHT_BOUND = 2
LEFT_BOUND = 3
BOTTOM_BOUND = 4

for mesh in meshs:
fb1 = mesh.outer_faces_with_direction([0.0, 1.0], 0.01)
fb2 = mesh.outer_faces_with_direction([1.0, 0.0], 0.01)
fb3 = mesh.outer_faces_with_direction([-1.0, 0.0], 0.01)
fb4 = mesh.outer_faces_with_direction([0.0, -1.0], 0.01)
mesh.set_region(TOP_BOUND, fb1)
mesh.set_region(RIGHT_BOUND, fb2)
mesh.set_region(LEFT_BOUND, fb3)
mesh.set_region(BOTTOM_BOUND, fb4)

2.3. study of cantilever beam 15
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Finite Element Method

Create a MeshFem object and associate the mesh with the finite element method.

[10]: fems = []
for fem_name in fem_names:

fems.append(gf.Fem("FEM_PRODUCT(" + fem_name + "," + fem_name + ")"))

[11]: mfus = []
for mesh, fem in zip(meshs, fems):

mfu = gf.MeshFem(mesh, 2)
mfu.set_fem(fem)
mfus.append(mfu)

Integral method

Associate the integration method with the mesh.

[12]: ims = []
for method in methods:

ims.append(gf.Integ("IM_PRODUCT(" + method + ", " + method + ")"))

[13]: mims = []
for mesh, im in zip(meshs, ims):

mim = gf.MeshIm(mesh, im)
mims.append(mim)

Variable

Define the model object and set the variable “u”.

[14]: mds = []
for mfu in mfus:

md = gf.Model("real")
md.add_fem_variable("u", mfu)
mds.append(md)

Properties

Define properties as constants for the model object. The Young’s modulus of steel is 𝐸 = 205000 × 106𝑁/𝑚2. Also
set Poisson’s ratio 𝜈 = 0.0 to ignore the Poisson effect.

[15]: E = 10000 # N/mm2
Nu = 0.0

for md in mds:
md.add_initialized_data("E", E)
md.add_initialized_data("Nu", Nu)

Plane Strain Element

Defines the plane strain element for variable ‘u’.

16 Chapter 2. Tutorial
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[16]: for md, mim in zip(mds, mims):
md.add_isotropic_linearized_elasticity_brick_pstrain(mim, "u", "E", "Nu")

Boundary Conditions

Set the Dirichlet condition for the region on the left side.

[17]: for (md, mim, mfu, fem) in zip(mds, mims, mfus, fems):
if fem.is_lagrange():

md.add_Dirichlet_condition_with_simplification("u", LEFT_BOUND)
else:

md.add_Dirichlet_condition_with_multipliers(mim, "u", mfu, LEFT_BOUND)

Set the Neumann boundary condition on the right side.

[18]: F = 1.0 # N/mm2
for (md, mfu, mim) in zip(mds, mfus, mims):

md.add_initialized_data("F", [0, F / (b * h)])
md.add_source_term_brick(mim, "u", "F", RIGHT_BOUND)

2.3.2 Solve

Solve the simultaneous equations of the model object to find the value of the variable ‘u’.

[19]: for md in mds:
md.solve()

The constraint on the left end has a displacement of 0.0.

[20]: for md, mfu, case in zip(mds, mfus, cases):
u = md.variable("u")
dof = mfu.basic_dof_on_region(LEFT_BOUND)
npt.assert_almost_equal(abs(np.max(u[dof])), 0.0)

2.3.3 Review results

Output and visualize the results of each case to vtk files.

[21]: for md, mfu, case in zip(mds, mfus, cases):
u = md.variable("u")
mfu.export_to_vtk("u_" + case + ".vtk", "ascii", mfu, u, "u")

Computation of Theoretical Solutions

Calculates the deflection at each coordinate for comparison with the theoretical solution. The theoretical solution for
a cantilever beam subjected to a concentrated load is as follows.

𝑤 (𝑥) =
𝐹𝐿3

3𝐸𝐼

2.3. study of cantilever beam 17
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[22]: I = b * h ** 3 / 12
w = F * L ** 3 / (3 * E * I)
w

[22]: 0.4

deformation diagram of case11

[23]: p = pv.Plotter(shape=(4, 4))

for i in range(4):
for j in range(4):

p.subplot(i, j)
mesh = pv.read("u_" + cases[i * 4 + j] + ".vtk")
p.add_text(cases[i * 4 + j], font_size=10)
p.add_mesh(mesh.warp_by_vector("u"), color="tan", show_edges=True)

p.show(cpos="xy")

[23]: [(5.015016078948975, 0.7012025117874146, 19.565021099812608),
(5.015016078948975, 0.7012025117874146, 0.0),
(0.0, 1.0, 0.0)]
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Comparison with Theoretical Solutions

[24]: b = 1.0
I = b * h ** 3.0 / 12.0
dmax = 1.0 / 3.0 * (F * L ** 3) / (E * I)
dmax

[24]: 0.4

Calculates the ratio of deformation to theoretical solution for each case.

[25]: data = []

columns = [
"case name",
"mesh",
"finite element method",
"integration method",
"ratio with theory",

]

for case, x, y, fem_name, method, md, mfu in zip(
cases, xs, ys, fem_names, methods, mds, mfus

):
u = md.variable("u")
dof = mfu.basic_dof_on_region(RIGHT_BOUND)
ratio = "{:.3f}".format(max(u[dof] / dmax))
data.append([case, str(x) + "x" + str(y), fem_name, method, ratio])

df = pd.DataFrame(data=data, columns=columns)
Markdown(df.to_markdown())

[25]:
case
name

mesh finite element method integration
method

ratio with the-
ory

0 case11 4x1 FEM_PK(1, 2) IM_GAUSS1D(4) 0.999
1 case12 4x2 FEM_PK(1, 2) IM_GAUSS1D(4) 1
2 case13 4x4 FEM_PK(1, 2) IM_GAUSS1D(4) 1
3 case14 16x8 FEM_PK(1, 2) IM_GAUSS1D(4) 1.006
4 case21 4x1 FEM_PK(1, 1) IM_GAUSS1D(2) 0.244
5 case22 4x2 FEM_PK(1, 1) IM_GAUSS1D(2) 0.244
6 case23 4x4 FEM_PK(1, 1) IM_GAUSS1D(2) 0.244
7 case24 16x8 FEM_PK(1, 1) IM_GAUSS1D(2) 0.841
8 case31 4x1 FEM_PK(1, 1) IM_GAUSS1D(0) 6.52355e+10
9 case32 4x2 FEM_PK(1, 1) IM_GAUSS1D(0) 1.317
10 case33 4x4 FEM_PK(1, 1) IM_GAUSS1D(0) 1.056
11 case34 16x8 FEM_PK(1, 1) IM_GAUSS1D(0) 1.021
12 case41 4x1 FEM_PK_WITH_CUBIC_BUBBLE(1,

1)
IM_GAUSS1D(4) 0.999

13 case42 4x2 FEM_PK_WITH_CUBIC_BUBBLE(1,
1)

IM_GAUSS1D(4) 1

14 case43 4x4 FEM_PK_WITH_CUBIC_BUBBLE(1,
1)

IM_GAUSS1D(4) 1

15 case44 16x8 FEM_PK_WITH_CUBIC_BUBBLE(1,
1)

IM_GAUSS1D(4) 1.006

2.3. study of cantilever beam 19
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[ ]:

2.4 Damping model with one degree of freedom

In this example of one degree of freedom with damping, we use here python interface, translate this program for
another interface or in C++ is easy. We also explain about how to use GWFL(Generic Weak Form Language) in
problem.

2.4.1 The probelm setting

A single truss element is used to verify the damping of a single-degree-of-freedom system. Node 1 is fully constrained,
and the damped free vibration is obtained after giving an instantaneous forced displacement of 1 mm in the 𝑥 direction
of node 2.

2.4.2 Building the program

Let us begin by loading GetFEM and fixing the parameter of the problem.

[1]: import getfem as gf
import numpy as np

E = 1.0e05 # Young Modulus (N/mm^2)
rho = 8.9e-09 # Mass Density (ton/mm^3)
A = 1.0 # Cross-Sectional Area (mm^2)
L = 1000.0 # Length (mm)

We consider that the length of mesh is 1D and it has 1 convex. We generate the mesh of the one degree of freedom
using empty mesh of GetFEM (see the documentation of the Mesh object in the python interface).

[2]: mesh = gf.Mesh("empty", 1)

[3]: mesh.add_convex?

Signature: mesh.add_convex(GT, PTS)
Docstring:
Add a new convex into the mesh.

The convex structure (triangle, prism,...) is given by `GT`
(obtained with GeoTrans('...')), and its points are given by
the columns of `PTS`. On return, `CVIDs` contains the convex #ids.
`PTS` might be a 3-dimensional array in order to insert more than
one convex (or a two dimensional array correctly shaped according
to Fortran ordering).
File: /usr/lib/python3/dist-packages/getfem/getfem.py
Type: method

[4]: cvid = mesh.add_convex(gf.GeoTrans("GT_PK(1, 1)"), [[0, L]])

We can check the mesh information using print function. We can see that the mesh has 2 point and 1 convex.
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[5]: print(mesh)

BEGIN POINTS LIST

POINT COUNT 2
POINT 0 0
POINT 1 1000

END POINTS LIST

BEGIN MESH STRUCTURE DESCRIPTION

CONVEX COUNT 1
CONVEX 0 'GT_PK(1,1)' 0 1

END MESH STRUCTURE DESCRIPTION

If you want to build a regular mesh quickly with multi convexs, we can use following Mesh object constructor.

[6]: mesh = gf.Mesh("cartesian", [0, L])

[7]: print(mesh)

BEGIN POINTS LIST

POINT COUNT 2
POINT 0 0
POINT 1 1000

END POINTS LIST

BEGIN MESH STRUCTURE DESCRIPTION

CONVEX COUNT 1
CONVEX 0 'GT_PK(1,1)' 0 1

END MESH STRUCTURE DESCRIPTION

Boundary selection

We have to select the different parts of the boundary where we will set some boundary conditions, namely boundary
of the fix boundary (0.0, 0.0, 0.0) and the deformed boundary of the (1000.0, 0.0, 0.0).

[8]: fb1 = mesh.outer_faces_with_direction([-1.0], 0.01)
fb2 = mesh.outer_faces_with_direction([1.0], 0.01)

LEFT = 1
RIGHT = 2

(continues on next page)
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(continued from previous page)

mesh.set_region(LEFT, fb1)
mesh.set_region(RIGHT, fb2)

Mesh draw

In order to preview the mesh and to control its validity, the following instructions can be used:

[9]: mesh.export_to_vtk("m.vtk")

An external graphical post-processor has to be used (for instance, pyvista).

[10]: import pyvista as pv
from pyvirtualdisplay import Display

display = Display(visible=0, size=(1280, 1024))
display.start()
p = pv.Plotter()
m = pv.read("m.vtk")
p.add_mesh(m, line_width=5)
pts = m.points
p.add_point_labels(pts, pts[:, 0].tolist(), point_size=10, font_size=10)
p.show(window_size=[512, 384], cpos="xy")
display.stop()

[10]: <pyvirtualdisplay.display.Display at 0x7feb22082ac0>

[11]: print(mesh)
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BEGIN POINTS LIST

POINT COUNT 2
POINT 0 0
POINT 1 1000

END POINTS LIST

BEGIN MESH STRUCTURE DESCRIPTION

CONVEX COUNT 1
CONVEX 0 'GT_PK(1,1)' 0 1

END MESH STRUCTURE DESCRIPTION
BEGIN REGION 1
0/1
END REGION 1
BEGIN REGION 2
0/0
END REGION 2

Definition of finite element methods and integration method

We will define three finite element methods. The first one, mfu is to approximate the displacement field. This is a
vector field. This is defined in Python by

[12]: mfu = gf.MeshFem(mesh, 1)

elements_degree = 1
mfu.set_classical_fem(elements_degree)

[46]: print(mfu)

BEGIN MESH_FEM

QDIM 1
CONVEX 0 'FEM_PK(1,1)'
BEGIN DOF_ENUMERATION
0: 0 1

END DOF_ENUMERATION
END MESH_FEM

where the 1 stands for the dimension of the vector field. The second line sets the finite element used.
classical_fem means a continuous Lagrange element and remember that elements_degree has been set to 1
which means that we will use quadratic (isoparametric) elements.

The last thing to define is an integration method mim. There is no default integration method in GetFEM so this is
mandatory to define an integration method. Of course, the order of the integration method have to be chosen sufficient
to make a convenient integration of the selected finite element method. Here, the square of elements_degree is
sufficient.
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[13]: mim = gf.MeshIm(mesh, elements_degree * 2)

[47]: print(mim)

BEGIN MESH_IM

CONVEX 0 'IM_GAUSS1D(2)'
END MESH_IM

Model definition

The model object in GetFEM gather the variables of the models (the unknowns), the data and what is called the model
bricks. The model bricks are some parts of the model (linear or nonlinear terms) applied on a single variable or linking
several variables. They are used to make the assembly of the (tangent) linear system (see The model object for more
details).

followingThis is not strictly mandatory to use the model object since one may use directly the assembly procedures and
build by it own the (tangent) linear system. The model object allows a rapid build of the model since most classical
parts of a model are pre-programmed: standard boundary conditions, standard partial differential equations, use of
multipliers to prescribe a constraint . . . Moreover, some bricks are designed to extend the possibilities of the standard
bricks (generic assembly bricks, explicit matrix brick . . . ). Thus, it is recommended to use the framework of the model
object.

There are two versions of the model: the real one and the complex one. Complex models have to be reserved for
special applications (some electromagnetism problems for instance) where it is advantageous to solve a complex
linear system.

Let us declare a real model with the one variables corresponding to the three fields to be computed:

[14]: model = gf.Model("real")
model.add_fem_variable("u", mfu)

Truss deformation problem

Let us now begin by truss deformation problem. The equation on the deformation 𝑢 and boundary condition can be
written as follows:

𝑑

𝑑𝑥

{︂
𝐸𝐴

𝑑𝑢

𝑑𝑥

}︂
= 𝐹

is expressed also:

∇(𝐷∇𝑢) = 𝐹

Where 𝐷 = 𝐸𝐴.

We use directly a GWFL term add_linear_term(md mim, “E*A*Grad_u.Grad_Test_u)”. See Com-
pute arbitrary terms - high-level generic assembly procedures - Generic Weak-Form Language (GWFL) for more
details on GWFL. ∫︁ 𝐿

0

𝐸𝐴
𝑑𝑢(𝑥)

𝑑𝑥

𝑑𝑣(𝑥)

𝑑𝑥
𝑑𝑥 =

∫︁ 𝐿

0

𝐹𝑣(𝑥)𝑑𝑥

𝑣 it the test function of 𝑢.
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[15]: model.add_linear_term?

Signature: model.add_linear_term(mim, expression, region=None, *args)
Docstring:
Synopsis: ind = Model.add_linear_term(self, MeshIm mim, string expression[, int
→˓region[, int is_symmetric[, int is_coercive]]])

Adds a matrix term given by the assembly string `expr` which will
be assembled in region `region` and with the integration method `mim`.
Only the matrix term will be taken into account, assuming that it is
linear.
The advantage of declaring a term linear instead of nonlinear is that
it will be assembled only once and no assembly is necessary for the
residual.
Take care that if the expression contains some variables and if the
expression is a potential or of first order (i.e. describe the weak
form, not the derivative of the weak form), the expression will be
derivated with respect to all variables.
You can specify if the term is symmetric, coercive or not.
If you are not sure, the better is to declare the term not symmetric
and not coercive. But some solvers (conjugate gradient for instance)
are not allowed for non-coercive problems.
`brickname` is an otpional name for the brick.
File: /usr/lib/python3/dist-packages/getfem/getfem.py
Type: method

[16]: model.add_initialized_data("D", [E * A])
model.add_linear_term(mim, "(D*Grad_u).Grad_Test_u")

[16]: 0

Returned integer of add_linear_term show the index of the brick.

The equation of Model object will be: ⎡⎢⎣ 𝐸𝐴

𝐿
−𝐸𝐴

𝐿

−𝐸𝐴

𝐿

𝐸𝐴

𝐿

⎤⎥⎦{︂𝑢0

𝑢1

}︂
=

{︂
0
0

}︂

You can assemble equtaion using assembly method. After assembling, you can check stiffness tangent matrix and
rhs of equation using tangent_matrix and rhs method.

[17]: model.assembly()
SM = model.tangent_matrix()
rhs = model.rhs()
print(SM)
print(rhs)

matrix(2, 2)
( (r0, 100) (r1, -100) )
( (r0, -100) (r1, 100) )

[0. 0.]

[18]: SM = gf.Spmat("empty", 2, 2)
SM.add(0, 0, E * A / L)
SM.add(0, 1, -E * A / L)

(continues on next page)
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(continued from previous page)

SM.add(1, 0, -E * A / L)
SM.add(1, 1, E * A / L)
print(SM)
# model.add_explicit_matrix("u", "u", SM)

matrix(2, 2)
( (r0, 100) (r1, -100) )
( (r0, -100) (r1, 100) )

The following program allows to take into account the whole elastic deformation equation. Note the use of specific
brick to prescribe the Dirichlet condition on the left boundary. There is several option to prescribe a Dirichlet condition
(see Dirichlet condition brick).

[19]: model.add_Dirichlet_condition_with_simplification?

Signature:
model.add_Dirichlet_condition_with_simplification(

varname,
region,
dataname=None,

)
Docstring:
Adds a (simple) Dirichlet condition on the variable `varname` and
the mesh region `region`. The Dirichlet condition is prescribed by
a simple post-treatment of the final linear system (tangent system
for nonlinear problems) consisting of modifying the lines corresponding
to the degree of freedom of the variable on `region` (0 outside the
diagonal, 1 on the diagonal of the matrix and the expected value on
the right hand side).
The symmetry of the linear system is kept if all other bricks are
symmetric.
This brick is to be reserved for simple Dirichlet conditions (only dof
declared on the correspodning boundary are prescribed). The application
of this brick on reduced dof may be problematic. Intrinsic vectorial
finite element method are not supported.
`dataname` is the optional right hand side of the Dirichlet condition.
It could be constant (but in that case, it can only be applied to
Lagrange f.e.m.) or (important) described on the same finite
element method as `varname`.
Returns the brick index in the model.
File: /usr/lib/python3/dist-packages/getfem/getfem.py
Type: method

[20]: model.add_Dirichlet_condition_with_simplification("u", LEFT)

[20]: 1

The equation of Model object will be: [︃
1 0

−𝐸𝐴

𝐿

𝐸𝐴

𝐿

]︃{︂
𝑢0

𝑢1

}︂
=

{︂
0
0

}︂

[21]: model.assembly()
SM = model.tangent_matrix()

(continues on next page)
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(continued from previous page)

rhs = model.rhs()
print(SM)
print(rhs)

matrix(2, 2)
( (r0, 1) )
( (r0, -100) (r1, 100) )

[0. 0.]

The following program allows to take into account the rhs of source force. Note the use of specific brick to prescribe
the source term brick on the rhs of equation.

[22]: model.add_source_term_brick?

Signature: model.add_source_term_brick(mim, varname, dataexpr, region=None, *args)
Docstring:
Synopsis: ind = Model.add_source_term_brick(self, MeshIm mim, string varname, string
→˓dataexpr[, int region[, string directdataname]])

Add a source term to the model relatively to the variable `varname`.
The source term is
represented by `dataexpr` which could be any regular expression of the
high-level generic assembly language (except for the complex version
where it has to be a declared data of the model).
`region` is an optional mesh region
on which the term is added. An additional optional data `directdataname`
can be provided. The corresponding data vector will be directly added
to the right hand side without assembly. Note that when region is a
boundary, this brick allows to prescribe a nonzero Neumann boundary
condition. Return the brick index in the model.
File: /usr/lib/python3/dist-packages/getfem/getfem.py
Type: method

[23]: model.add_initialized_data("F", [1.0])
ind = model.add_source_term_brick(mim, "u", "F", RIGHT)

The equation of Model object will be: [︃
1 0

−𝐸𝐴

𝐿

𝐸𝐴

𝐿

]︃{︂
𝑢0

𝑢1

}︂
=

{︂
0
1

}︂

[24]: model.assembly()
SM = model.tangent_matrix()
rhs = model.rhs()
print(SM)
print(rhs)

matrix(2, 2)
( (r0, 1) )
( (r0, -100) (r1, 100) )

[0. 1.]

If you know the excplit rhs. You can add it using add_exclicit_rhs:
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[25]: model.add_explicit_rhs?

Signature: model.add_explicit_rhs(varname, L)
Docstring:
Add a brick representing an explicit right hand side to be added to
the right hand side of the tangent linear system relatively to the
variable `varname`. The given rhs should have the same size than the
dimension of `varname`. The rhs can be changed by the command
Model.set_private_rhs(). If `dataname` is specified instead of
`L`, the vector `L` is defined in the model as data with the given name.
Return the brick index in the model.
File: /usr/lib/python3/dist-packages/getfem/getfem.py
Type: method

[26]: # model.add_explicit_rhs("u", [0.0, 1.0])

Model solve

Once the model is correctly defined, we can simply solve it by:

[27]: model.solve()

[27]: (0, 1)

Export of the solution

The finite element problem is now solved. We can get the value of displacement variable using variable method.

[28]: U = model.variable("u")
print(U)

[0. 0.01]

The model is simple enough to make sure the results are correct.

[29]: U = [0.0, L / E * A]
print(U)

[0.0, 0.01]

Delete of brick

In the next section, we calculate a dynamic analysis, so we delete the static load brick. delete_brick method
delete a variable or a data from the model.

[30]: model.delete_brick?

Signature: model.delete_brick(ind_brick)
Docstring: Delete a variable or a data from the model.
File: /usr/lib/python3/dist-packages/getfem/getfem.py
Type: method
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[31]: model.delete_brick(ind)

The equation of Model object will be: [︃
1 0

−𝐸𝐴

𝐿

𝐸𝐴

𝐿

]︃{︂
𝑢0

𝑢1

}︂
=

{︂
0
0

}︂

[32]: model.assembly()
SM = model.tangent_matrix()
rhs = model.rhs()
print(SM)
print(rhs)

matrix(2, 2)
( (r0, 1) )
( (r0, -100) (r1, 100) )

[0. 0.]

The model tools for the integration of transient problems

Although time integration scheme can be written directly using the model object by describing the problem to be
solved at each iteration, the model object furnishes some basic tools to facilitate the writing of such schemes. For
example you can add Newmark scheme using add_Newmark_scheme method:

[33]: beta = 1.0 / 4.0
gamma = 1.0 / 2.0
model.add_Newmark_scheme("u", beta, gamma)

We use average constant acceleration (𝛽 =
1

4
, 𝛾 =

1

2
) which is unconditonally stable in linear model.

Some intermediate variables are added to the model to represent the time derivative (and the second order time deriva-
tive for second order problem). For instance, if u is a variable, Dot_u will represent the first order time derivative
of u and Dot2_u the second order one. One can refer to these variables in the model to add a brick on it or to use
it in GWFL, the generic weak form language. However, these are not considered to be independent variables, they
will be linked to their corresponding original variable (in an affine way) by the time integration scheme. Most of the
schemes need also the time derivative at the previous time step and add the data Previous_Dot_u and possibly
Previous_Dot2_u to the model.

Some data are added to the model to represent the state of the system at previous time steps. For classical one-step
schemes (for the moment, only one-step schemes are provided), only the previous time step is stored. For instance
if u is a variable (thus represented at step 𝑛), Previous_u, Previous2_u, Previous3_u will be the data
representing the state of the variable at the previous time step (step 𝑛− 1, 𝑛− 2 and 𝑛− 3).

Mass matrix

The element consistent mass matrix is given by the following equation using the mass density and the test function of
the element:

𝑀 =

∫︁ 𝐿

0

𝜌𝑢 · 𝑣𝑑𝑥

Mass brick adds a mass matrix on the tangent linear system with respect to a certain variable. The function which adds
this brick to a model is:
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[34]: model.add_mass_brick?

Signature: model.add_mass_brick(mim, varname, dataexpr_rho=None, *args)
Docstring:
Synopsis: ind = Model.add_mass_brick(self, MeshIm mim, string varname[, string
→˓dataexpr_rho[, int region]])

Add mass term to the model relatively to the variable `varname`.
If specified, the data `dataexpr_rho` is the
density (1 if omitted). `region` is an optional mesh region on
which the term is added. If it is not specified, it
is added on the whole mesh. Return the brick index in the model.
File: /usr/lib/python3/dist-packages/getfem/getfem.py
Type: method

[35]: # model.add_initialized_data("rho", rho)
# model.add_mass_brick(mim, "Dot2_u", "rho")

Of cource we can also add the mass matrix using Generic Weak-Form Language (GWFL).

[36]: model.add_initialized_data("rho", [rho])
model.add_linear_term(mim, "rho*Dot2_u.Test_Dot2_u")

[36]: 2

Excplict mass matrix is

𝑀 =
𝜌𝐴𝐿

6

[︂
2 1
1 2

]︂
And the equation is

[︃
1 0

𝜌𝐴𝐿

6

𝜌𝐴𝐿

6

]︃⎧⎪⎨⎪⎩
𝜕2𝑢0

𝜕𝑡2
𝜕2𝑢1

𝜕𝑡2

⎫⎪⎬⎪⎭+

[︃
1 0

−𝐸𝐴

𝐿

𝐸𝐴

𝐿

]︃{︂
𝑢0

𝑢1

}︂
=

{︂
0
0

}︂

Angular frequency without damping of this model is:

𝜔𝑢 =

√︂
𝑘

𝑚

𝜔𝑑 =

√
4𝑚𝑘 − 𝑐2

2𝑚

with

𝑚 =
𝜌𝐴𝐿

3

𝑘 =
𝐸𝐴

𝐿

Damping matrix

The damping matrix is given by the following equation using the viscous damping 𝜇 and the test function 𝑣.

𝐶 =

∫︁ 𝐿

0

𝜇𝑢 · 𝑣𝑑𝑥
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However it is hard to compute the 𝑚𝑢, we usually use Rayleigh damping.

𝐶 = 𝛼 ·𝑀 + 𝛽 ·𝐾

[37]: m = rho * A * L / 3.0
k = E * A / L
omega_u = np.sqrt(k / m)
omega_u

[37]: 5805.8474978713775

[38]: h = 0.02
alpha = 2.0 * omega_u * h
beta = 2.0 * h / omega_u * h
c = alpha * m + beta * k
omega_d = np.sqrt(4.0 * m * k - c ** 2) / (2.0 * m)
omega_d

[38]: 5804.639291409139

we can also add the matrix using Generic Weak-Form Language (GWFL) to Dot_u.

[39]: model.add_initialized_data("alpha", alpha)
model.add_initialized_data("beta", beta)
model.add_linear_term(

mim, "alpha*rho*Dot_u.Test_Dot_u+beta*D*(Grad_Dot_u.Grad_Test_Dot_u)"
)

[39]: 3

The equation is

[︃
1 0

𝜌𝐴𝐿

6

𝜌𝐴𝐿

3

]︃⎧⎪⎨⎪⎩
𝜕2𝑢0

𝜕𝑡2
𝜕2𝑢1

𝜕𝑡2

⎫⎪⎬⎪⎭+

(︃
𝛼

[︃
1 0

𝜌𝐴𝐿

6

𝜌𝐴𝐿

3

]︃
+ 𝛽

[︃
1 0

−𝐸𝐴

𝐿

𝐸𝐴

𝐿

]︃)︃⎧⎪⎨⎪⎩
𝜕𝑢0

𝜕𝑡
𝜕𝑢1

𝜕𝑡

⎫⎪⎬⎪⎭+

[︃
1 0

−𝐸𝐴

𝐿

𝐸𝐴

𝐿

]︃{︂
𝑢0

𝑢1

}︂
=

{︂
0
0

}︂

The implicit Newmark scheme for second order problems

The equation of Newmark theme is following (𝑛 is the step of time):(︂
𝐾 +

𝛾

𝛽∆𝑡
𝐶 +

1

𝛽∆𝑡2
𝑀

)︂
𝑢𝑛+1 = 𝑓𝑛+1 + 𝑀

(︂(︂
1

2𝛽
− 1

)︂
𝜕2𝑢𝑛

𝜕𝑡2
+

1

𝛽∆𝑡

𝜕𝑢𝑛

𝜕𝑡
+

1

𝛽∆𝑡2
𝑢𝑛

)︂
+ 𝐶

(︂(︂
𝛾

2𝛽
− 1

)︂
∆𝑡𝑛

𝜕2𝑢𝑛

𝜕𝑡2
+

(︂
𝛾

𝛽
− 1

)︂
𝜕𝑢𝑛

𝜕𝑡
+

𝛾

𝛽∆𝑡
𝑢𝑛

)︂
We can set the time step 𝑑𝑡 using set_time_step method.

[40]: model.set_time_step?

Signature: model.set_time_step(dt)
Docstring:
Set the value of the time step to `dt`. This value can be change
from a step to another for all one-step schemes (i.e for the moment
to all proposed time integration schemes).
File: /usr/lib/python3/dist-packages/getfem/getfem.py
Type: method
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It is generally recommended to use 1/20 of the desired period for the time step. So we use 1/20 of the natural period
of the model.

[41]: T0 = 2.0*np.pi*np.sqrt(m/k)
dt = T0 / 20.0
model.set_time_step(dt)

We consider the case where the left side is fully constrained and the right side is subjected to a prescribed displacement
of 1 mm.

[42]: U0 = np.array([0.0, 1.0]) # mm
V0 = np.array([0.0, 0.0]) # mm/sec
A0 = np.array([0.0, 0.0]) # mm/sec^2
model.set_variable("Previous_u", U0)
model.set_variable("Previous_Dot_u", U0)
model.set_variable("Previous_Dot2_u", A0)

Typically, the solve on the different time steps will take the following form:

[43]: T = np.array([])
U = np.array([])
for t in np.arange(0.0, 0.004, dt):

model.solve()
T = np.append(T, model.get_time())
U = np.append(U, model.variable("u")[1])
model.shift_variables_for_time_integration()

Note that the call of the method:

[44]: model.shift_variables_for_time_integration?

Signature: model.shift_variables_for_time_integration()
Docstring:
Function used to shift the variables of a model to the data
corresponding of ther value on the previous time step for time
integration schemes. For each variable for which a time integration
scheme has been declared, the scheme is called to perform the shift.
This function has to be called between two time steps.
File: /usr/lib/python3/dist-packages/getfem/getfem.py
Type: method

is needed between two time step since it will copy the current value of the variables (u and Dot_u for instance) to the
previous ones (Previous_u and Previous_Dot_u).

The comparison between the damping rate of the analytical solution and the FEM amplitude is plotted in the bottom
figure. Both are in good agreement.

𝑢 (𝑡 + 𝑛𝑇 ) = 𝑢 (𝑡) * exp

(︂
−2𝜋𝑛ℎ

𝜔𝑢

𝜔𝑑

)︂

[45]: import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(T, U, label="FEM", color="black")
n = np.arange(0, 5)

(continues on next page)
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ax.plot(
n * 2.0 * np.pi / omega_d,
1.0 * np.exp(-2.0 * np.pi * n * h * omega_u / omega_d),
color="red",
marker="o",
label="Analytical",

)
ax.set_xlim(0.000, 0.004)
ax.set_ylim(-1.000, 1.000)
ax.legend()

[45]: <matplotlib.legend.Legend at 0x7feaae70cfd0>

This is a small model example, but you can calculate the more complicated element in the same way.

[ ]:

2.5 Assembly examples in Python

This is the use with Python interface of the C++ assembly examples in Compute arbitrary terms - high-level generic
assembly procedures - Generic Weak-Form Language (GWFL).

[1]: import getfem as gf
import numpy as np

elements_degree = 1
# elements_degree = 2

mesh = gf.Mesh("cartesian", np.arange(0.0, 2.0, 1.0))

mf is supposed to be an already declared gf.MeshFem object and mim a already declared gf.MeshIm object on
the same mesh.

[2]: mf = gf.MeshFem(mesh, 1)
mf.set_classical_fem(elements_degree)
print(mf)
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BEGIN MESH_FEM

QDIM 1
CONVEX 0 'FEM_PK(1,1)'
BEGIN DOF_ENUMERATION
0: 0 1

END DOF_ENUMERATION
END MESH_FEM

[3]: mim = gf.MeshIm(mesh, elements_degree*2)
print(mim)

BEGIN MESH_IM

CONVEX 0 'IM_GAUSS1D(2)'
END MESH_IM

As a first example, if one needs to perform the assembly of a Poisson problem

−div∇𝑢 = 𝑓, inΩ,

the stiffness matrix is given

𝐾𝑖,𝑗 =

∫︁
Ω

∇𝜙𝑖 · ∇𝜙𝑗𝑑𝑥,

and will be assembled by the following code:

[4]: md = gf.Model("real")
md.add_fem_variable("u", mf)
md.add_nonlinear_term(mim, "Grad_u.Grad_Test_u")
md.assembly(option="build_matrix")
K = md.tangent_matrix()
print(K)

matrix(2, 2)
( (r0, 1) (r1, -1) )
( (r0, -1) (r1, 1) )

Note that the value of the variable do not really intervene because of the linearity of the problem. This allows to pass
"u" as the value of the variable which will not be used. Note also that two other possible expressions for exactly
the same result for the assembly string are "Grad_Test2_u.Grad_Test_u" (i.e. an order 2 expression) or
"Norm_sqr(Grad_u)/2" (i.e. a potential). In fact other possible assembly string will give the same result such
as "Grad_u.Grad_u/2" or "[Grad_u(1), Grad_u(2)].[Grad_Test_u(1), Grad_Test_u(2)]"
for two-dimensional problems. However, the recommendation is preferably to give an order 1 expression (weak
formulation) if there is no particular reason to prefer an order 0 or an order 2 expression.

[5]: md = gf.Model("real")
md.add_fem_variable("u", mf)
md.add_nonlinear_term(mim, "Grad_u.Grad_u/2")
md.assembly(option="build_matrix")
K = md.tangent_matrix()
print(K)
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matrix(2, 2)
( (r0, 1) (r1, -1) )
( (r0, -1) (r1, 1) )

[6]: # for two-dimensional problems
# md = gf.Model("real")
# md.add_fem_variable("u", mf)
# md.add_nonlinear_term(mim, "[Grad_u(1), Grad_u(2)].[Grad_Test_u(1), Grad_Test_u(2)]
→˓")
# md.assembly(option="build_matrix")
# K = md.tangent_matrix()
# print(K)

As a second example, let us consider a coupled problem, for instance the mixed problem of incompressible elasticity
given by the equations

−div
(︀
𝜇
(︀
∇𝑢 + (∇𝑢)𝑇

)︀
− 𝑝𝐼𝑑

)︀
= 𝑓, in Ω,

−div 𝑢 = 0.

where u is the vector valued displacement and p the pressure. The assembly of the matrix for the whole coupled
system can be performed as follows:

[7]: epsilon = 1.; E = 21E6; nu = 0.3;
clambda = E*nu/((1+nu)*(1-2*nu));
cmu = E/(2*(1+nu));

mf_u = gf.MeshFem(mesh, 1)
mf_u.set_classical_fem(elements_degree)
mf_p = gf.MeshFem(mesh, 1)
mf_p.set_classical_fem(elements_degree)

md = gf.Model("real")
md.add_fem_variable("u", mf_u)
md.add_fem_variable("p", mf_p)
md.add_initialized_data("mu", cmu)
md.add_nonlinear_term(mim, "2*mu*Sym(Grad_u):Grad_Test_u"

"- p*Trace(Grad_Test_u) - Test_p*Trace(Grad_u)")
md.assembly(option="build_matrix")
K = md.tangent_matrix()
print(K)

matrix(4, 4)
( (r2, 0.5) (r3, -0.5) )
( (r2, 0.5) (r3, -0.5) )
( (r0, 0.5) (r1, 0.5) (r2, 1.61538e+07) (r3, -1.61538e+07) )
( (r0, -0.5) (r1, -0.5) (r2, -1.61538e+07) (r3, 1.61538e+07) )

where, here, mf_u and mf_p are supposed to be some already declared getfem::mesh_fem objects defined on the
same mesh, mim a already declared getfem::mesh_im object and mu is the Lame coefficient. It is also possible to
perform the assembly of the sub-matrix of this system separately.

Let us see now how to perform the assembly of a source term. The weak formulation of a volumic source term is

Let us see now how to perform the assembly of a source term. The weak formulation of a volumic source term is∫︁
Ω

𝑓𝑣𝑑𝑥
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where 𝑓 is the source term and 𝑣 the test function. The corresponding assembly can be written:

[8]: F = np.ones(mf_u.nbdof())

md = gf.Model("real")
md.add_fem_variable("u", mf_u)
md.add_initialized_fem_data("f", mf_u, F)
md.add_nonlinear_term(mim, "f*Test_u")
md.assembly("build_rhs")
rhs = md.rhs()
print(rhs)

[-0.5 -0.5]

if the source term is describe on a finite element mf_data and the corresponding vector of degrees of freedom F.
Explicit source terms are also possible. For instance:

[9]: region = -1 # ALL
md = gf.Model("real")
md.add_fem_variable("u", mf_u)
md.add_nonlinear_term(mim, "sin(X(1))*Test_u", region)
# for two-dimensional problems
# md.add_nonlinear_term(mim, "sin(X(1)+X(2))*Test_u", region)
md.assembly("build_rhs")
rhs = md.rhs()
print(rhs)

[-0.15767352 -0.30191429]

where region is the mesh region number.

As another example, let us describe a simple nonlinear elasticity problem. Assume that we consider a Saint-Venant
Kirchhoff constitutive law which means that we consider the following elastic energy on a body of reference configu-
ration Ω: ∫︁

Ω

𝜆

2

(︀
tr(𝐸)2 + 𝜇tr

(︀
𝐸2
)︀)︀

𝑑𝑥

where 𝜆, 𝜇 are the Lamé coefficients and 𝐸 is the strain tensor given by 𝐸 =
(︀
∇𝑢 + (∇𝑢)𝑇 + (∇𝑢)𝑇∇𝑢

)︀
/2.

This is possible to perform the assembly of the corresponding tangent problem as follows:

[10]: md = gf.Model("real")

md.add_fem_variable("u", mf_u)
md.add_initialized_data("lambda", clambda)
md.add_initialized_data("mu", cmu)
md.add_nonlinear_term(mim, "lambda*sqr(Trace(Grad_u+Grad_u'+Grad_u'*Grad_u))"

"+ mu*Trace((Grad_u+Grad_u'+Grad_u'*Grad_u)"
"*(Grad_u+Grad_u'+Grad_u'*Grad_u))")

md.assembly("build_rhs")
rhs = md.rhs()
print(rhs)
md.assembly("build_matrix")
print(K)

[0. 0.]
matrix(4, 4)
( (r2, 0.5) (r3, -0.5) )
( (r2, 0.5) (r3, -0.5) )

(continues on next page)
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( (r0, 0.5) (r1, 0.5) (r2, 1.61538e+07) (r3, -1.61538e+07) )
( (r0, -0.5) (r1, -0.5) (r2, -1.61538e+07) (r3, 1.61538e+07) )

and to adapt a Newton-Raphson algorithm to solve that nonlinear problem. Of course the expression is rather repetitive
and it would be preferable to define some intermediate nonlinear operators. However, note that repeated expressions
are automatically detected and computed only once in the assembly.

The last example is the assembly of the stiffness matrix of an order four problem, the Kirchhoff-Love plate problem:

[11]: h = 1.0 # mm
D = 2.0*h**3*E/(3*(1-nu**2))

md = gf.Model("real")

md.add_fem_variable("u", mf)
md.add_initialized_data("D", D)
md.add_initialized_data("nu", nu)
md.add_nonlinear_term(mim, "D*(1-nu)*(Hess_u:Hess_Test_u) - "

"D*nu*Trace(Hess_u)*Trace(Hess_Test_u)")
md.assembly(option="build_all")
K = md.tangent_matrix()

with 𝐷 the flexion modulus and 𝜈 the Poisson ratio.

[ ]:
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